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Abstract: We study the existence of solutions for a fourth-order functional boundary value problem
u®(t) = f(t,u(t),u’(t),u”(t),u”(t),),t € (0,2)

@ (U) =g, (u)=p,(u) =¢,(u)=0
using the coincidence degree theory due to Mawhin and constructing suitable operators.

at resonance { where (pi:C3[O,1]—>R,i:1,2,3. By

1. Introduction and introduction

A Dboundary value problem is said to be at resonance if the corresponding homogeneous
boundary value problem has a non-trivial solution. Boundary value problems at resonance have
been studied bymany authors. .We refer the readers to [1-9] and the references cited therein. In [10],
the authors discussed the second-order differential equation x"(t) = f (t, x(t), X'(t)),t € (0,1) with

functional boundary conditions I',(x) =0,T",(x) =0, where T',,T", are linear functional on C'[0,1]
satisfying the general resonance condition I';(x)I", (1) =T",()T",(X).

In [11] proved the existence of solutions for third-order functional boundary value problems
(FBVPs) at resonance

{x’”(t) = f(t,x(t), X'(t), x"(t)),0<t <1
@ (X) = 9,(X) = 5(x) =0,

where ¢ :C%[0,1] > R,i=1,2,3,4 are bounded linear functionals. In this paper, the existence of

solutions to the following boundary value problems is studied by using the coincidence degree
extension theorem

{u("’ (t) = f(t,u(t),u’(t),u"(t),u"(t),),te(0,1) 1)

o, (U)=p,U)=@,(u)=¢,(u)=0
where ¢ :C*[0,]] > R,i=1,2,3,¢(t))=0,i=1,2,3,4, j e{1,2,3,4}.

2. Preliminaries
For convenience, we denote

21 (t%) ot %) o) @)
A= ?, (%) ?, (t*) »,(t) 9,

¢3(t3) ¢3(t2) (1) @, (1) ,

2 (t*) @y (t*) () @, 2)

Copyright © (2019) Francis Academic Press, UK 1471 DOI: 10.25236/etmhs.2019.314



o (J,t-9)vE)ds) ) al) a0
2, (t=9V()ds) 2, 2,0 2,0
oi([ E-9)vE)ds) 0,(t) 20 2,0,

2u([[t-9V(E)d) 2.() 0.) 2.0)

Al (V) =

o) ([ t-9v)ds) @)«
2,) o[ t-9V()ds) 7,0 2,0
2s(®) ([ -9 V(S)ds) 0y1) (D),

() ([ t-9)V(E)ds) p,1) 0,0)

Az (V) =

o) o) o, t-9VE)d) @0
2,) 2, o t-9VE)ds) 2,0
o) o) o[ t-9)V(s)ds) 1),

2,) 2() o], t-9V()d) 2,0

A3 (V) =

o) o) 20 o -9 v(s)dsh)
2,) 2,0 20 o (t-5)V(s)ds)
o) ) 0, o], t-5)v(s)s)|,
2:0) 2 2 (] (t-5)V(s)ds)

From the last three determinants we can define and derive the following three relations:

@, (-u"(O)t* —2u"(0)t* —2u'(0)t —2u(0)) @ (t*) @) @)
A (Lu) = qz>2(—u"’(0)t3—ZU”(O)t2 —2u'(0)t—2u(0)) §02(t2) Pt ¢, _ _u"(0)A @)

@y (-u"(0)t" —2u"(O)t" —2u'(O)t—2u(0)) @, (t7) @s(t) @, (D)

0, (-u"(0)* —2u"(0)t* —2u'(0)t —2u(0)) @, (t*) @, (1) @, (D)

o) @ (-u"O) ~2u" (Ot —2u'(0)t-2u(0) @ (t) @)
A, (Lu)= |7 () @,(-u"(O)t* —2u"(0)t* —2u'(0)t—2u(0)) @, (1) ¢,(D)
2,(t)  @,(-u"(0)t" —2u"(O)t* —2u'(0)t—2u(0)) @y(t) (D)
2,() @, (-u"(0)t* 20" (O)t* ~2u'(0)t—2u(0)) @,(t) @, (D)

o) @al’) @@u"O)r-2u"(O)t° -2u'(0)t-2u(0) @)
2,() @ (") @,(-u"O)t —2u"(O)t* ~2u'(0)t—2u(0)) ¢, (D)
2,(t")  @,(t) @, (-u"(O)’ —2u"(O)t* —2u'(0)t ~2u(0)) @, (D)
2,() @, (t*) @(-u"O)t —2u"(O)t* ~2u'(0)t-2u(0)) ¢, (D)

A4 (V) =

= -3u"(0)A 3)

A,(Lu) = =—-6u'(0)A 4)
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and A, (Lu) =-6u(0)A. Also, A;,i, j=1,2,3,4,A(v);,i,k=12,34, j={12,3,43\{k},
are the cofactors of  (t* /) in A, A, (v),k =1,2,3,4respectively.

Mawhin's continuation theorem:
Let X,Y be the Banach space, L:domLc X —Y be the Linear mapping, N:X —Y be the

Nonlinear continuous mapping, Let dimkerL = dim(\%m I_) <+, and ImLisaClosed setinY,

according to L is a Fredholm operator whose index is zero. If L is a Fredholm operator whose index
is zero, then there is a continuous projection operator P: X — KerLand Q:Y —Y,, such that

ImP=KerL, KerQ=ImL, X =KerL®KerP,Y =ImL®ImQ.L,: is invertible, so let's

= L|domLmX1
call that the inverse K .If QN(Q)is bounded, and K(I —Q)N : Q — X is relatively tight in X ,

according to N is L— tightinQ, where Qis any bounded open set in X .

Theorem 2.1: (Mawhin coincidence degree theory ™) Let X,Y be the Banach space, L isa
Fredholm operator whose index is zero, N QY is L- tight inQ..If

(1) Lx # ANX, V(x, 1) € (domL moQ) x (0,1) ;

(2)Nx g ImL,Vxe KerLNnoQ;

(3)deg(JON,Q ~ KerL,0) = 0 ,there J:ImQ — KerL is a linear isomorphism; equation

Lx = Nx has at least one solution in domL N Q.

We work inU = C°[0,1] with the norm |uf| = max{Ju]_ ,|u’ u”

vl Ju, 3 where

Jull,, = max, . |u(t)] .we define V = L'[0,1] with the norm |v||, = ij(t)dt.

In this paper, we always suppose that the following condition holds:

(C) There exist constants k, > 0,i=1,2,3,4, such that |¢, (u)| <k ||u|,u €U and the function

f (t, x,y, z,w) satisfies the Carath’eodory conditions, that is, f (-, x,y, z,w) is measurable for each
fixed (x,y,z,w)eR*, f(t,----) is continuous for a.e. t €[0,1].

3. The main results

In this case, we assume that there exists je{l,2,3,4} such that A, #0.In what follows, we
choose and fix such j.

Lemma 3.1 There exists a function g, €V such that A,(g,) =1.

Lemma 3.2 ImL={veV:A,(v)=0}.

Lemma3.3K,, = (L|domLﬂKefP )

We introduce the constants Iy =k, [A,,|+K,[A,]+ K, |Ay|+k, |A,,| and
I = max{kK,, kK, kK, KKy, KK, KK, } (5)
The next assumption is fulfilled in the main results by virtue of appropriate assumptions on
ft,\e-):
(H1) For any r >0, there exists a function h, €V such that | f(t,u(t),u’(t),u"(t), u’”(t))| <h (t),
ueU,ful<r.
Lemma 3.4 There exists a function g, €V such that A,(g,) =1.

If (H1) holds and Q c U is bounded, then N is L-compact on Q.
In order to obtain the main results, we impose the following conditions:
(H2) There exist nonnegative functions a,b,c,d,e eV such that
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| f (X, y,z,w)| <a(t)+b(t)|x|+c(t)|y|+d(t)|z] +e)|w],t [0,1],a,b,c,d,e € R;
(Hs) There exists a constant M, > 0such that A,(Nu) =0 if |u(t)| > M,,,t €[0,1];

(Hz) There exists a constant M, >0 such that if |<:|>M14 ,then one of the following two
inequalities holds:

cA,(Nc)>0 (6)
or cA,(Nc)<0 @)

(here Nc = f(t,c,0,0,0),ceR)
Lemma 3.5 Assume that (H>) (Hs) hold and let

1
Ao (ol + el + et + el < ®)

where A, =1+ 8l .Then Q,, ={uedomL\KerL:Lu=ANu, 1 €(0,1)} is bounded.

ja
Lemma 3.6 Assume that (H,) holds. Then ©,, ={u € KerL : Nu e Im L} is bounded.

Lemma 3.7 Assume that (Hs) holds. Then
1,if (6)holds

—1,if (7)holds
Theorem 3.1: Assume that (H,)- (H4) and (8) hold. Then problem (1) has at least one solution.
Proof LetQ > Q,, UQ,, UQ,, UQ,, be bounded. It follows Lemmas3.5 and Lemmas3.6 that

Lu # ANu,u e (domL\ KerL)(10Q, 1 € (0,1),and Nu ¢ ImL,u e KerL(0Q.Let
H(u,1)=2Apu+(1-2)J,Q,Nu,

where J, :ImQ, — KerL is an isomorphism defined by J,(cg,)=c,ceR. By Lemma3.7,we

know
H(u, 1) #0,u e 0Q KerL, A €[0,1]. Since the degree is invariant under a homotopy,

deg(J,Q, N|,.., »QNKerL,0,0) =deg(H (-,0), QN KerL,0,0)
=deg(H (-,1), 2N KerL,0,0)
=deg(pl, QN KerL,0,0)=0.
By Theorem2.1, Lu = Nu has a solution in domLNQ.

Q,, ={U:pAU+(@1-1)A,(Nu) =0,u e KerL, A €[0,1]} is bounded, where p :{

4. Conclusion

In this paper, the existence of at least one solutions to boundary value problem of resonance
fourth-order with functional boundary; By means of Machin’s continuation theorem, the existence
of solution is verified.
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