Existence of solutions to boundary value problem of fourth-order with functional boundary conditions at resonance

¹Nanchang Institute of Science and Technology, Nanchang 330108, Jiangxi

²Nanchang Institute of Science and Technology, Nanchang 330108, Jiangxi ^afeixu126@126.com, ^blinyuanzhou@126.com

Keywords: Functional boundary condition; fourth-order; resonance; Boundary value problem.

Abstract: We study the existence of solutions for a fourth-order functional boundary value problem

at resonance
$$\begin{cases} u^{(4)}(t) = f(t, u(t), u'(t), u''(t), u'''(t), t \in (0, 1) \\ \varphi_1(u) = \varphi_2(u) = \varphi_3(u) = \varphi_4(u) = 0 \end{cases} \text{ where } \varphi_i : C^3[0, 1] \to R, i = 1, 2, 3 \text{ . By }$$

using the coincidence degree theory due to Mawhin and constructing suitable operators.

1. Introduction and introduction

A boundary value problem is said to be at resonance if the corresponding homogeneous boundary value problem has a non-trivial solution. Boundary value problems at resonance have been studied bymany authors. We refer the readers to [1-9] and the references cited therein. In [10], the authors discussed the second-order differential equation $x''(t) = f(t, x(t), x'(t)), t \in (0,1)$ with functional boundary conditions $\Gamma_1(x) = 0, \Gamma_2(x) = 0$, where Γ_1, Γ_2 are linear functional on $C^1[0,1]$ satisfying the general resonance condition $\Gamma_1(x)\Gamma_2(1) = \Gamma_1(1)\Gamma_2(x)$.

In [11] proved the existence of solutions for third-order functional boundary value problems (FBVPs) at resonance

$$\begin{cases} x'''(t) = f(t, x(t), x'(t), x''(t)), 0 < t < 1 \\ \varphi_1(x) = \varphi_2(x) = \varphi_3(x) = 0, \end{cases}$$

where $\varphi_i: C^3[0,1] \to R, i=1,2,3,4$ are bounded linear functionals. In this paper, the existence of solutions to the following boundary value problems is studied by using the coincidence degree extension theorem

$$\begin{cases} u^{(4)}(t) = f(t, u(t), u'(t), u''(t), u'''(t), t \in (0, 1) \\ \varphi_1(u) = \varphi_2(u) = \varphi_3(u) = \varphi_4(u) = 0 \end{cases}$$
 (1)

where $\varphi_i: C^3[0,1] \to R, i = 1, 2, 3, \varphi_i(t^j) = 0, i = 1, 2, 3, 4, j \in \{1, 2, 3, 4\}$.

2. Preliminaries

For convenience, we denote

$$\Delta = \begin{vmatrix} \varphi_1(t^3) & \varphi_1(t^2) & \varphi_1(t) & \varphi_1(1) \\ \varphi_2(t^3) & \varphi_2(t^2) & \varphi_2(t) & \varphi_2(1) \\ \varphi_3(t^3) & \varphi_3(t^2) & \varphi_3(t) & \varphi_3(1) \\ \varphi_4(t^3) & \varphi_4(t^2) & \varphi_4(t) & \varphi_4(1) \end{vmatrix},$$

DOI: 10.25236/etmhs.2019.314

$$\Delta_{1}(v) = \begin{vmatrix} \varphi_{1}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{1}(t^{2}) & \varphi_{1}(t) & \varphi_{1}(1) \\ \varphi_{2}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{2}(t^{2}) & \varphi_{2}(t) & \varphi_{2}(1) \\ \varphi_{3}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{3}(t^{2}) & \varphi_{3}(t) & \varphi_{3}(1) \\ \varphi_{4}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{4}(t^{2}) & \varphi_{4}(t) & \varphi_{4}(1) \end{vmatrix}$$

$$\Delta_{2}(v) = \begin{vmatrix} \varphi_{1}(t^{3}) & \varphi_{1}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{1}(t) & \varphi_{1}(1) \\ \varphi_{2}(t^{3}) & \varphi_{2}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{2}(t) & \varphi_{2}(1) \\ \varphi_{3}(t^{3}) & \varphi_{3}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{3}(t) & \varphi_{3}(1) \\ \varphi_{4}(t^{3}) & \varphi_{4}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{4}(t) & \varphi_{4}(1) \end{vmatrix}$$

$$\Delta_{3}(v) = \begin{vmatrix} \varphi_{1}(t^{3}) & \varphi_{1}(t^{2}) & \varphi_{1}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{1}(1) \\ \varphi_{2}(t^{3}) & \varphi_{2}(t^{2}) & \varphi_{2}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{2}(1) \\ \varphi_{3}(t^{3}) & \varphi_{3}(t^{2}) & \varphi_{3}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{4}(1) \end{vmatrix}$$

$$\Delta_{4}(v) = \begin{vmatrix} \varphi_{1}(t^{3}) & \varphi_{1}(t^{2}) & \varphi_{1}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{2}(1) \\ \varphi_{2}(t^{3}) & \varphi_{2}(t^{2}) & \varphi_{2}(\int_{0}^{t}(t-s)^{3}v(s)ds) & \varphi_{4}(1) \end{vmatrix}$$

$$\Delta_{4}(v) = \begin{vmatrix} \varphi_{1}(t^{3}) & \varphi_{1}(t^{2}) & \varphi_{1}(t) & \varphi_{1}(\int_{0}^{t}(t-s)^{3}v(s)ds) \\ \varphi_{2}(t^{3}) & \varphi_{2}(t^{2}) & \varphi_{2}(t) & \varphi_{2}(\int_{0}^{t}(t-s)^{3}v(s)ds) \\ \varphi_{3}(t^{3}) & \varphi_{3}(t^{2}) & \varphi_{3}(t) & \varphi_{3}(\int_{0}^{t}(t-s)^{3}v(s)ds) \\ \varphi_{3}(t^{3}) & \varphi_{3}(t^{2}) & \varphi_{3}(t) & \varphi_{3}(\int_{0}^{t}(t-s)^{3}v(s)ds) \\ \varphi_{4}(t^{3}) & \varphi_{4}(t^{2}) & \varphi_{4}(t) & \varphi_{4}(\int_{0}^{t}(t-s)^{3}v(s)ds) \\ \varphi_{4}(t^{3}) & \varphi_{4}(t^{2}) & \varphi_{4}(t) & \varphi_{4}(t^{2}) & \varphi_{4}(t) \\ \varphi_{4}(t^{3}) & \varphi_{4}(t^{2}) & \varphi_{4}(t) & \varphi_{4}(t^{2}) \\ \varphi_{4}$$

From the last three determinants we can define and derive the following three relations:

$$\Delta_{1}(Lu) = \begin{vmatrix} \varphi_{1}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{1}(t^{2}) & \varphi_{1}(t) & \varphi_{1}(1) \\ \varphi_{2}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{2}(t^{2}) & \varphi_{2}(t) & \varphi_{2}(1) \\ \varphi_{3}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{3}(t^{2}) & \varphi_{3}(t) & \varphi_{3}(1) \\ \varphi_{4}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{4}(t^{2}) & \varphi_{4}(t) & \varphi_{4}(1) \end{vmatrix} = -u'''(0)\Delta$$
(2)

$$\begin{vmatrix}
\varphi_{4}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{4}(t^{2}) & \varphi_{4}(t) & \varphi_{4}(1) \\
\varphi_{4}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{1}(t) & \varphi_{1}(1) \\
\varphi_{2}(t^{3}) & \varphi_{2}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{2}(t) & \varphi_{2}(1) \\
\varphi_{3}(t^{3}) & \varphi_{3}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{3}(t) & \varphi_{3}(1) \\
\varphi_{4}(t^{3}) & \varphi_{4}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{4}(t) & \varphi_{4}(1)
\end{vmatrix} = -3u''(0)\Delta$$

$$\begin{vmatrix}
\varphi_{1}(t^{3}) & \varphi_{1}(t^{2}) & \varphi_{1}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{1}(1) \\
\varphi_{1}(t^{3}) & \varphi_{1}(t^{2}) & \varphi_{1}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{1}(1)
\end{vmatrix}$$

$$\Delta_{3}(Lu) = \begin{vmatrix} \varphi_{1}(t^{3}) & \varphi_{1}(t^{2}) & \varphi_{1}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{1}(1) \\ \varphi_{2}(t^{3}) & \varphi_{2}(t^{2}) & \varphi_{2}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{2}(1) \\ \varphi_{3}(t^{3}) & \varphi_{3}(t^{2}) & \varphi_{3}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{3}(1) \\ \varphi_{4}(t^{3}) & \varphi_{4}(t^{2}) & \varphi_{4}(-u'''(0)t^{3} - 2u''(0)t^{2} - 2u'(0)t - 2u(0)) & \varphi_{4}(1) \end{vmatrix} = -6u'(0)\Delta$$

$$(4)$$

and $\Delta_4(Lu) = -6u(0)\Delta$. Also, Δ_{ij} , $i, j = 1, 2, 3, 4, \Delta_k(v)_{ij}$, $i, k = 1, 2, 3, 4, j = \{1, 2, 3, 4\} \setminus \{k\}$, are the cofactors of $\varphi_i(t^{4-j})$ in $\Delta, \Delta_k(v), k = 1, 2, 3, 4$ respectively.

Mawhin's continuation theorem:

Let X,Y be the Banach space, $L:domL \subset X \to Y$ be the Linear mapping, $N:X \to Y$ be the Nonlinear continuous mapping, Let $\dim \ker L = \dim(\frac{Y}{\operatorname{Im} L}) < +\infty$, and $\operatorname{Im} L$ is a Closed set in Y, according to L is a Fredholm operator whose index is zero. If L is a Fredholm operator whose index is zero, then there is a continuous projection operator $P: X \to KerL$ and $Q: Y \to Y_1$, such that $\operatorname{Im} P = K \operatorname{er} L, K \operatorname{er} Q = \operatorname{Im} L, X = KerL \oplus KerP, Y = \operatorname{Im} L \oplus \operatorname{Im} Q : L_P := L \big|_{domL \cap X_1}$ is invertible, so let's call that the inverse K. If $QN(\overline{\Omega})$ is bounded, and $K(I-Q)N: \overline{\Omega} \to X$ is relatively tight in X, according to N is L- tight in $\overline{\Omega}$, where Ω is any bounded open set in X.

Theorem 2.1: (Mawhin coincidence degree theory ^[10]) Let X,Y be the Banach space, L is a Fredholm operator whose index is zero, $N:\overline{\Omega} \to Y$ is L – tight in $\overline{\Omega}$. If

- (1) $Lx \neq \lambda Nx$, $\forall (x, \lambda) \in (domL \cap \partial\Omega) \times (0,1)$;
- (2) $Nx \notin \text{Im } L, \forall x \in KerL \cap \partial \Omega$;
- (3) $\deg(JQN, \Omega \cap KerL, 0) \neq 0$, there $J : \operatorname{Im} Q \to KerL$ is a linear isomorphism; equation Lx = Nx has at least one solution in $domL \cap \overline{\Omega}$.

We work in $U = C^3[0,1]$ with the norm $||u|| = \max\{||u||_{\infty}, ||u'||_{\infty}, ||u''||_{\infty}, ||u'''||_{\infty}\}$, where

$$||u||_{\infty} = \max_{t \in [0,1]} |u(t)|$$
 we define $V = L^{1}[0,1]$ with the norm $||v||_{1} = \int_{0}^{1} v(t) dt$.

In this paper, we always suppose that the following condition holds:

(C) There exist constants $k_i > 0, i = 1, 2, 3, 4$, such that $|\varphi_i(u)| \le k_i ||u||, u \in U$ and the function f(t, x, y, z, w) satisfies the Carath´eodory conditions, that is, $f(\cdot, x, y, z, w)$ is measurable for each fixed $(x, y, z, w) \in \mathbb{R}^4$, $f(t, \cdot, \cdot, \cdot, \cdot)$ is continuous for a.e. $t \in [0, 1]$.

3. The main results

In this case, we assume that there exists $j \in \{1, 2, 3, 4\}$ such that $\Delta_{j4} \neq 0$. In what follows, we choose and fix such j.

Lemma 3.1^[12] There exists a function $g_4 \in V$ such that $\Delta_4(g_4) = 1$.

Lemma 3.2^[12] Im $L = \{ v \in V : \Delta_4(v) = 0 \}$.

Lemma 3.3 $K_{P4} = (L|_{domL \cap KerP_4})^{-1}$.

We introduce the constants $l_3 = k_1 |\Delta_{14}| + k_2 |\Delta_{24}| + k_3 |\Delta_{34}| + k_4 |\Delta_{44}|$ and

$$l = \max\{k_1 k_2, k_1 k_3, k_1 k_4, k_2 k_3, k_2 k_4, k_3 k_4\}.$$
 (5)

The next assumption is fulfilled in the main results by virtue of appropriate assumptions on $f(t,\cdot,\cdot,\cdot,\cdot)$:

(H₁) For any r > 0, there exists a function $h_r \in V$ such that $|f(t, u(t), u'(t), u''(t), u'''(t))| \le h_r(t)$, $u \in U, ||u|| \le r$.

Lemma 3.4 There exists a function $g_4 \in V$ such that $\Delta_4(g_4) = 1$.

If (H_1) holds and $\Omega \subset U$ is bounded, then N is L-compact on $\overline{\Omega}$.

In order to obtain the main results, we impose the following conditions:

(H₂) There exist nonnegative functions $a, b, c, d, e \in V$ such that

$$|f(t, x, y, z, w)| \le a(t) + b(t)|x| + c(t)|y| + d(t)|z| + e(t)|w|, t \in [0,1], a, b, c, d, e \in \mathbb{R};$$

- (H₃) There exists a constant $M_{04} > 0$ such that $\Delta_4(Nu) \neq 0$ if $|u(t)| > M_{04}, t \in [0,1]$;
- (H₄) There exists a constant $M_{14} > 0$ such that if $|c| > M_{14}$, then one of the following two inequalities holds:

$$c\Delta_{A}(Nc) > 0 \tag{6}$$

or
$$c\Delta_{\Lambda}(Nc) < 0$$
 (7)

(here $Nc = f(t, c, 0, 0, 0), c \in R$)

Lemma 3.5^[12] Assume that (H_2) (H_3) hold and let

$$A_{P4}(\|b\|_{1} + \|c\|_{1} + \|d\|_{1} + \|e\|_{1}) < \frac{1}{2}.$$
(8)

where
$$A_{P4} = 1 + \frac{8l}{\left|\Delta_{j4}\right|}$$
. Then $\Omega_{14} = \{u \in domL \setminus KerL : Lu = \lambda Nu, \lambda \in (0,1)\}$ is bounded.

Lemma 3.6^[12] Assume that (H_4) holds. Then $\Omega_{24} = \{u \in KerL : Nu \in Im L\}$ is bounded.

Lemma Assume that (H_4) Then

$$\Omega_{44} = \{U : \rho \lambda U + (1 - \lambda) \Delta_4(Nu) = 0, u \in KerL, \lambda \in [0, 1] \} \text{ is bounded, where } \rho = \begin{cases} 1, if(6)holds \\ -1, if(7)holds \end{cases}$$

Theorem 3.1: Assume that (H_2) - (H_4) and (8) hold. Then problem (1) has at least one solution. **Proof** Let $\Omega \supset \overline{\Omega}_{14} \cup \overline{\Omega}_{24} \cup \overline{\Omega}_{34} \cup \overline{\Omega}_{44}$ be bounded. It follows Lemmas 3.5 and Lemmas 3.6 that $Lu \neq \lambda Nu, u \in (domL \setminus KerL) \cap \partial\Omega, \lambda \in (0,1), \text{and } Nu \notin Im L, u \in KerL \cap \partial\Omega.$ Let $H(u,\lambda) = \lambda \rho u + (1-\lambda) J_{\lambda} Q_{\lambda} N u$,

where $J_4: \operatorname{Im} Q_4 \to \operatorname{Ker} L$ is an isomorphism defined by $J_4(cg_4) = c, c \in R$. By Lemma 3.7, we

 $H(u,\lambda) \neq 0, u \in \partial\Omega \cap KerL, \lambda \in [0,1]$. Since the degree is invariant under a homotopy,

$$\begin{split} \deg(J_4Q_4\,N\Big|_{\mathit{KerL}}\,,\Omega\bigcap\mathit{KerL},0,0) &= \deg(H(\cdot,0),\Omega\cap\mathit{KerL},0,0) \\ &= \deg(H(\cdot,1),\Omega\cap\mathit{KerL},0,0) \\ &= \deg(\rho I,\Omega\cap\mathit{KerL},0,0) \neq 0\,. \end{split}$$

By Theorem 2.1, Lu = Nu has a solution in $dom L \cap \overline{\Omega}$.

4. Conclusion

In this paper, the existence of at least one solutions to boundary value problem of resonance fourth-order with functional boundary; By means of Machin's continuation theorem, the existence of solution is verified.

Acknowledgements

This work is supported by Department of education science and technology research youth project in 2017(Item no.GJJ171107).

References

- [1] Du, Z, Lin, X, Ge, W: A note on a third-order multi-point boundary value problem at resonance. J. Math. Anal. Appl. 2005, 302: 217-229.
- [2] Chang, SK, Pei, M: Solvability for some higher order multi-point boundary value problems at

- resonance. Results Math. 2013, 63:763-777.
- [3] Cui, Y: Solvability of second-order boundary-value problems at resonance involving integral conditions. *Electron.J. Differ. Equ.* 2012 45.
- [4] Jiang, W: Solvability for a coupled system of fractional differential equations at resonance. Nonlinear Anal., *Real World Appl.* 2012, 13:2285-2292.
- [5] Jiang, W: Solvability of fractional differential equations with p-Laplacian at resonance. *Appl. Math. Comput.* 2015, 260:48-56.
- [6] Kosmatov, N, Jiang, W: Second-order functional problems with a resonance of dimension one. *Differ. Equ. Appl.* 2016, 3:349-365.
- [7] Lin, X, Du, Z, Meng, F: A note on a third-order multi-point boundary value problem at resonance. *Math. Nachr.* 2011, 284:1690-1700.
- [8] Phung, PD, Truong, LX: On the existence of a three point boundary value problem at resonance in Rn. J. *Math. Anal.Appl.* 2014, 416:522-533.
- [9] Zhang, X, Feng, M, Ge, W: Existence result of second-order differential equations with integral boundary conditions at resonance. J. *Math. Anal. Appl.* 2009, 353:311-319.
- [10] Zhao, Z, Liang, J: Existence of solutions to functional boundary value problem of second-order nonlinear differential equation. J. *Math. Anal. Appl.* 2011, 373:614-634.
- [11] Mawhin, J: Topological Degree Methods in Nonlinear Boundary Value Problems. NSF-CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence (1979).
- [12] Weihua Jiang, Nickolai Kostmatov, Solvability of a third-order differential equation with functional boundary conditions at resonance. J. Boundary Value Problems. 2017, 2017:1-20.